Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Microbiol Spectr ; : e0115022, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2097931

ABSTRACT

Recent studies suggest the enhancement of liver injury in COVID-19 patients infected with Hepatitis C virus (HCV). Hepatocytes express low levels of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor, raising the possibility of HCV-SARS-CoV-2 coinfection in the liver. This work aimed to explore whether HCV and SARS-CoV-2 coinfect hepatocytes and the interplay between these viruses. We demonstrate that SARS-CoV-2 coinfects HCV-infected Huh7.5 (Huh7.5HCV) cells. Both viruses replicated efficiently in the coinfected cells, with HCV replication enhanced in coinfected compared to HCV-mono-infected cells. Strikingly, Huh7.5HCV cells were eight fold more susceptible to SARS-CoV-2 pseudoviruses than naive Huh7.5 cells, suggesting enhanced SARS-CoV-2 entry into HCV-preinfected hepatocytes. In addition, we observed increased binding of spike receptor-binding domain (RBD) protein to Huh7.5HCV cells, as well as enhanced cell-to-cell fusion of Huh7.5HCV cells with spike-expressing Huh7.5 cells. We explored the mechanism of enhanced SARS-CoV-2 entry and identified an increased ACE2 mRNA and protein levels in Huh7.5HCV cells, primary hepatocytes, and in data from infected liver biopsies obtained from database. Importantly, higher expression of ACE2 increased HCV infection by enhancing its binding to the host cell, underscoring its role in the HCV life cycle as well. Transcriptome analysis revealed that shared host signaling pathways were induced in HCV-SARS-CoV-2 coinfection. This study revealed complex interactions between HCV and SARS-CoV-2 infections in hepatocytes, which may lead to the increased liver damage recently reported in HCV-positive COVID-19 patients. IMPORTANCE Here, we provide the first experimental evidence for the coexistence of SARS-CoV-2 infection with HCV, and the interplay between them. The study revealed a complex relationship of enhancement between the two viruses, where HCV infection increased the expression of the SARS-CoV-2 entry receptor ACE2, thus facilitating SARS-CoV-2 entry, and potentially, also HCV entry. Thereafter, SARS-CoV-2 infection enhanced HCV replication in hepatocytes. This study may explain the aggravation of liver damage that was recently reported in COVID-19 patients with HCV coinfection and suggests preinfection with HCV as a risk factor for severe COVID-19. Moreover, it highlights the possible importance of HCV treatment for coinfected patients. In a broader view, these findings emphasize the importance of identifying coinfecting pathogens that increase the risk of SARS-CoV-2 infection and that may accelerate COVID-19-related co-morbidities.

2.
Br J Clin Pharmacol ; 87(3): 1432-1442, 2021 03.
Article in English | MEDLINE | ID: covidwho-787556

ABSTRACT

AIM: There is a clinical need for safety data regarding hydroxychloroquine (HCQ) and chloroquine (CQ) during the coronavirus (COVID-19) pandemic. We analysed real-world data using the U.S. Food and Drug Administration Adverse Events Reporting System (FAERS) database to assess HCQ/CQ-associated cardiovascular adverse events (CVAEs) in pre-COVID-19 reports. METHODS: We conducted disproportionality analysis of HCQ/CQ in the FAERS database (07/2014-9/2019), using reporting odds ratio (ROR) and the lower bound of the information component 95% credibility interval (IC025 ). RESULTS: The full database contained 6 677 225 reports with a mean (±SD) age of 53 (±17) years and 74% females. We identified 4895 reports of HCQ/CQ related adverse events, of which 696 (14.2%) were CVAEs. Compared with the full database, HCQ/CQ use was associated with a higher reporting rate of major CVAEs, including cardiomyopathy (n = 86 [1.8%], ROR = 29.0 [23.3-35.9]), QT prolongation (n = 43 [0.9%], ROR = 4.5 [3.3-6.1]), cardiac arrhythmias (n = 117 [2.4%], ROR = 2.2 [1.8-2.7]) and heart failure (n = 136 [2.8%], ROR = 2.2 [1.9-2.7], all IC025 > 0). No statistically significant differences were observed between sex and age groups. CVAEs were reported more often in patients with systemic lupus erythematosus and Sjogren's syndrome. HCQ/CQ-associated CVAEs demonstrated subsequent hospitalization and mortality rates of 39% and 8%, respectively. Overdose reports demonstrated an increased frequency of QT prolongation and ventricular arrhythmias (35% and 25%, respectively). CONCLUSION: In a real-world setting, HCQ/CQ treatment is associated with higher reporting rates of various CVAEs, particularly cardiomyopathy, QT prolongation, cardiac arrhythmias and heart failure. HCQ/CQ-associated CVAEs result in high rates of severe outcomes and should be carefully considered as an off-label indication, especially for patients with cardiac disorders.


Subject(s)
Antimalarials/adverse effects , COVID-19 Drug Treatment , Cardiovascular Diseases/chemically induced , Chloroquine/adverse effects , Hydroxychloroquine/adverse effects , Pharmacovigilance , Adult , Aged , Antimalarials/therapeutic use , COVID-19/complications , Cardiovascular Diseases/epidemiology , Chloroquine/therapeutic use , Databases, Factual , Drug Overdose , Female , Humans , Hydroxychloroquine/therapeutic use , Male , Middle Aged , Odds Ratio , Treatment Outcome
3.
Bioinformatics ; 37(7): 929-936, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-722921

ABSTRACT

MOTIVATION: The recent emergence of the novel SARS-coronavirus 2 (SARS-CoV-2) and its international spread pose a global health emergency. The spike (S) glycoprotein binds ACE2 and promotes SARS-CoV-2 entry into host cells. The trimeric S protein binds the receptor using the receptor-binding domain (RBD) causing conformational changes in S protein that allow priming by host cell proteases. Unraveling the dynamic structural features used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal novel therapeutic targets. Using structures determined by X-ray crystallography and cryo-EM, we performed structural analysis and atomic comparisons of the different conformational states adopted by the SARS-CoV-2-RBD. RESULTS: Here, we determined the key structural components induced by the receptor and characterized their intramolecular interactions. We show that κ-helix (polyproline-II) is a predominant structure in the binding interface and in facilitating the conversion to the active form of the S protein. We demonstrate a series of conversions between switch-like κ-helix and ß-strand, and conformational variations in a set of short α-helices which affect the hinge region. These conformational changes lead to an alternating pattern in conserved disulfide bond configurations positioned at the hinge, indicating a possible disulfide exchange, an important allosteric switch implicated in viral entry of various viruses, including HIV and murine coronavirus. The structural information presented herein enables to inspect and understand the important dynamic features of SARS-CoV-2-RBD and propose a novel potential therapeutic strategy to block viral entry. Overall, this study provides guidance for the design and optimization of structure-based intervention strategies that target SARS-CoV-2. AVAILABILITY AND IMPLEMENTATION: We have implemented the proposed methods in an R package freely available at https://github.com/Grantlab/bio3d. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , Protein Binding , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL